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Abstract
The quantum teleportation with a noisy EPR state is discussed. Using an
optimal decomposition technique, we compute the concurrence, entanglement
of formation and Groverian measure for various noisy EPR resources. It is
shown analytically that all entanglement measures reduce to zero when F̄ �
2/3, where F̄ is an average fidelity between Alice and Bob. This fact indicates
that the entanglement is a genuine physical resource for the teleportation
process. This fact gives valuable clues to the optimal decomposition for higher-
qubit mixed states. As an example, the optimal decompositions for the 3-qubit
mixed states are discussed by adopting a teleportation with a W-state.

PACS numbers: 03.67.Mn, 03.65.Ud

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement of quantum states plays a crucial role in modern quantum information theories
[1]. Although we do not have a general theory of the quantum entanglement, many physicists
believe that it is a physical resource which makes quantum computers outperform classical ones
[2]. Thus in order to quantify the entanglement of a given quantum state many entanglement
measures were constructed during the last decade. The basic entanglement measure is the
entanglement of formation [3–6]. Generally, entanglement of formation is defined in any
bipartite system. For a pure state if |ψ〉 is the state of the whole system, the entanglement of
formation E(ψ) is defined as the von Neumann entropy E(ψ) = −Trρ log2 ρ, where ρ is the
partial trace over either of the two subsystems. Another measure we would like to use in this
paper is Groverian measure [7]. The Groverian measure G(ψ) for the given n-qubit quantum
state |ψ〉 is defined using a quantity

Pmax(ψ) = max
|q1〉,...,|qn〉

|〈q1| . . . 〈qn|ψ〉|2 (1.1)
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Figure 1. A quantum circuit for quantum teleportation through noisy channels with EPR state.
The top two lines belong to Alice while the bottom line belongs to Bob. The dotted box represents
noisy channels, which makes the EPR state a mixed state.

where |qi〉’s are single-qubit states. In fact, Pmax(ψ) is the maximal probability of success in
the Grover’s search algorithm [8] when |ψ〉 is used as an initial state. Roughly speaking, Pmax

quantifies a distance between a given n-qubit state |ψ〉 and a set of product states. Therefore, the
entanglement should decrease with increasing Pmax. For this reason the Groverian measure is
defined as G(ψ) = √

1 − Pmax(ψ). For 2-qubit pure states Pmax can be analytically computed
[9], whose expression is

Pmax = 1
2 [1 +

√
1 − 4 det ρ] (1.2)

where ρ is the partial trace over either of the 2-qubits. Recently, Pmax for some 3-qubit
states were also computed analytically [10–12] by exploiting a theorem of [13]. Although
much progress has been made recently for understanding the general features of pure-state
entanglement, it seems to be far from complete understanding.

The purpose of this paper is to examine the physical role of mixed-state entanglement.
In order to address this issue it is convenient to consider the quantum teleportation [14] when
the quantum channel is affected by noise. The effect of noise in teleportation was discussed
in [15]. We would like to summarize the paper briefly in the following. Let us consider the
usual situation of the teleportation: Alice and Bob share an EPR channel

|β00〉 = 1√
2
(|00〉 + |11〉) (1.3)

and Alice wants to send a single-qubit state

|ψin〉 = cos

(
θ

2

)
eiφ/2|0〉 + sin

(
θ

2

)
e−iφ/2|1〉 (1.4)

to Bob. We assume, however, that the perfect EPR state was not prepared initially due to
noise. In terms of density operator language this means that instead of ρEPR = |β00〉〈β00|
the imperfect density operator ε(ρEPR) was made initially, where ε is a quantum operation.
Since ε(ρEPR) �= ρEPR generally, Alice cannot send |ψin〉 perfectly to her remote recipient.
This situation is depicted in figure 1. In this figure the top two lines belong to Alice while
the bottom line belongs to Bob. The density operator ρin is |ψin〉〈ψin| and ρout is a state Bob
receieves from Alice. The dotted box represents an imperfect EPR resource produced initially
due to the noise.

Two questions naturally arise at this stage. The first one is what the explicit expression
of ε(ρEPR) is. The second one is how much information Alice can send to Bob. Obviously,
the answers are dependent on what type of noise we take into account. To address the first
question authors in [15] used a master equation in the Lindbald form [16]

∂σ

∂t
= −i[HS, σ ] +

∑
i,α

(
Li,ασL

†
i,α − 1

2

{
L

†
i,αLi,α, σ

})
(1.5)
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where σ ≡ ε(ρEPR) and Li,α is an Lindbald operator which represents the type of noise.
In order to simplify the situation simple types of noise Li,α ≡ √

κσ (i)
α have been chosen in

[15] which acts on the ith qubit to describe decoherence, where σ (i)
α denotes the Pauli matrix

of the ith qubit with α = x, y, z. The constant κ is approximately equals to the inverse
of decoherence time. The master equation approach is shown to be equivalent to the usual
quantum operation approach for the description of noise in an open quantum system [1].
Solving a master equation (1.5), we can now derive ε(ρEPR) explicitly. If we choose noises
with same direction, i.e. (L2,x, L3,x), (L2,y, L3,y) or (L2,z, L3,z), equation (1.5) provides

εx(ρEPR) = 1

2

⎛
⎜⎜⎝

τ+ 0 0 τ+

0 τ− τ− 0
0 τ− τ− 0
τ+ 0 0 τ+

⎞
⎟⎟⎠ , εy(ρEPR) = 1

2

⎛
⎜⎜⎝

τ+ 0 0 τ+

0 τ− −τ− 0
0 −τ− τ− 0
τ+ 0 0 τ+

⎞
⎟⎟⎠

εz(ρEPR) = 1

2

⎛
⎜⎜⎝

1 0 0 e−4κt

0 0 0 0
0 0 0 0

e−4κt 0 0 1

⎞
⎟⎟⎠ , (1.6)

where τ± = (1 ± e−4κt )/2. If one chooses the isotropic noise, equation (1.5) yields

εI (ρEPR) = 1

2

⎛
⎜⎜⎝

τ̃+ 0 0 2τ̃+ − 1
0 τ̃− 0 0
0 0 τ̃− 0

2τ̃+ − 1 0 0 τ̃+

⎞
⎟⎟⎠ (1.7)

where τ̃± = (1 ± e−8κt )/2.
To address the second issue we consider a square of fidelity between ρin and ρout

F(ρin, ρout) = 〈ψin|ρout|ψin〉 ≡ F(θ, φ). (1.8)

Then how much information Alice can send to Bob with imperfect EPR resource ε(ρEPR) can
be measured by the average fidelity

F̄ ≡ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θF (θ, φ). (1.9)

Thus the perfect teleportation means F̄ = 1. Reference [15] has shown that for the same-axis
noises the average fidelities become

F̄ x = F̄ y = F̄ z = 2
3 + 1

3 e−4κt (1.10)

while for the case of the isotropic noise F̄ becomes

F̄ I = 1
2 + 1

2 e−8κt . (1.11)

Regardless of types of the noisy channels F̄ decays as κt increases.
What kind of information on the average fidelity F̄ can be obtained from the entanglement

of the mixed states εα(ρEPR) (α = x, y, z) and εI (ρEPR) or vice versa? To address this question
is the main motivation of this paper. Since F̄ decreases with increasing κt , we can conjecture
that the effect of noises generally disentangles the mixed states provided the entanglement is
a genuine resource for the teleportation. Since, furthermore, F̄ = 2/3 corresponds to the best
possible score when Alice and Bob communicate with each other through the classical channel
[17], this fact implies that ε(ρEPR) does not play any role as an entanglement resource when
F̄ � 2/3. Thus we can conjecture that εα(ρEPR) (α = x, y, z) should be separable states as
κt approaches infinity while εI (ρEPR) becomes separable when κt � µ∗ = (1/8) ln 3. If our

3
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conjecture is right, we can conjecture F̄ from the entanglement of the mixed-state resource
without any calculation. Reversely, we can conjecture the entanglement of mixed states from
the average fidelity. This means that entanglement is a genuine resource in the teleportation
process even if noises are involved. Since an explicit calculation of the n-qubit mixed-state
entanglement is highly non-trivial when n � 3,4 it may give a valuable tool for the approximate
conjecture of the entanglement.

We will show that the above-mentioned conjectures on the relation between entanglement
of mixed-state and F̄ are perfectly correct. This paper is organized as follows. In section 2 we
discuss the entanglement measures for the mixed states and their inter-relations. It is found
that not only the entanglement of formation but also the Groverian measure are monotonically
related to the concurrence. This fact indicates that the optimal ensemble for the concurrence is
also optimal for the Groverian measure. In section 3 we compute explicitly the concurrence,
entanglement of formation and Groverian measure for various mixed-states obtained by same-
axis and isotropic noises. The results of the computation are compared to the average fidelity
F̄ . It is shown that as we conjectured, all entanglement measures become zero when F̄ � 2/3.
To confirm that our conjecture is right, we also compute the entanglement measures and
average fidelity for different-axis noises in section 4. In these cases the results perfectly agree
with our conjecture. In section 5 the optimal decomposition for the higher-qubit mixed states
is discussed. Especially, the case of 3-qubit mixed-state is discussed by adopting quantum
teleportation with W-state. Also the calculability for the second definition of the Groverian
measure is briefly discussed in the same section.

2. Entanglement of mixed states

There are many measures which quantify the entanglement of the mixed states. Among them
we will use in this paper the entanglement of formation and the Groverian measure.

As we said in the previous section, the entanglement of formation for any pure bipartite
system is defined as a von Neumann entropy of its subsystems. Then using a convex roof
construction [18, 19], one can extend the definition of the entanglement of formation to the
full state space in a natural way as

E(ρ) = min
∑

j

PjE(ρj ) (2.1)

where minimum is taken over all possible ensembles of pure states ρj with 0 � Pj � 1.
In [4, 5] it was shown how to construct the optimal ensemble, where the minimization in
equation (2.1) is naturally taken in the 2-qubit system.

A convex roof method can also be used to extend the definition of the Groverian measure
in the full state space

G(ρ) = min
∑

j

PjG(ρj ) (2.2)

where minimum is taken over all possible ensembles of pure states. Since the Groverian
measure for the pure state is an entanglement monotone [20], it is not difficult to prove that
G(ρ) in equation (2.2) is also monotone even if ρ is a mixed state.

However, there is different extension of the Groverian measure from the aspect of the
operational treatment of the entanglement [21]. In [21], the Groverian measure for the mixed
state is defined as

G̃(ρ) =
√

1 − max
σ∈S

F 2(ρ, σ ), (2.3)

4 For some entanglement measures it is also highly non-trivial to compute it even for n = 2.
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where S is a set of separable states and F(ρ, σ ) is a fidelity defined F(ρ, σ ) = Tr
√

ρ1/2σρ1/2.
It was shown in [21] that G̃(ρ) is also an entanglement monotone. Following Uhlmann
theorem [22] one can re-express G̃(ρ) in a form

G̃(ρ) =
√

1 − max
|φ〉

max
|ψ〉

|〈φ|ψ〉|2 (2.4)

where |φ〉 and |ψ〉 are purifications of σ and ρ respectively5.
Now, we would like to comment on how the optimization for the Groverian measure

defined in equation (2.2) is taken. In order to describe this it is convenient to comment first on
how the optimization for the entanglement of formation was taken in [4, 5]. First, the authors
in these references notified that in the pure 2-qubit state |ψ〉 the entanglement of formation
E(ψ) and concurrence C(ψ) are related to each other in a form

E(ψ) = h

(
1 +

√
1 − C2(ψ)

2

)
(2.5)

where h(x) ≡ −x log2 x − (1−x) log2(1−x). Thus E(C) is monotonically increasing from 0
to 1 as C goes from 0 to 1. For the mixed states, therefore, optimization for the concurrence in
all possible pure-state ensembles naturally coincides with optimization for the entanglement
of formation. Second, the authors in [4] found the optimization for the concurrence by making
use of some geometrical argument when the density matrix has two or three zero eigenvalues.
Finally, Wootters derived the optimal ensemble for arbitrary 2-qubit mixed states in [5]. We
should note that the Groverian measure for the arbitrary 2-qubit pure state |ψ〉 is related to the
concurrence in a form

G(ψ) = 1√
2
(1 −

√
1 − C2(ψ))1/2. (2.6)

Like the entanglement of formation, therefore, G(C) is also a monotonic function from 0
to 1/

√
2 as C goes from 0 to 1. This supports that the optimization for the concurrence in

all possible ensembles of pure states coincides with not only that for the entanglement of
formation but also that for the Groverian measure defined in equation (2.2).

Although, therefore, the optimization for the first Groverian measure G(ρ) is
possible, the optimization for the second Groverian measure G̃(ρ) seems to be
highly non-trivial because it is defined by 4-qubit pure states via the purification
and the Uhlmann theorem. In this paper we will use E(ρ) and G(ρ) to confirm our conjecture
on the relation between the mixed-state entanglement and the average fidelity F̄ .

3. Same-axis and isotropic noises

In this section we would like to compute the entanglement for the mixed states given in
equations (1.6) and (1.7). Before starting computation it is convenient for later use to introduce
a ‘magic basis’ [18]:

|e1〉 = 1√
2
(|00〉 + |11〉) |e2〉 = i√

2
(|00〉 − |11〉)

(3.1)
|e3〉 = i√

2
(|01〉 + |10〉) |e4〉 = 1√

2
(|01〉 − |10〉).

5 In fact, one can remove the optimization on |ψ〉 [1], which yields

G̃(ρ) =
√

1 − max
|φ〉

|〈φ|ψ〉|2.
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Figure 2. The κt-dependence of the entanglement formation and Groverian measure for
εα(ρEPR)(α = x, y, z) and εI (ρEPR). Regardless of noise types the entanglement decreases
with increasing κt . This means that the noises generally disentangle the quantum channel. For the
isotropic noisy channel EI and GI become zero when κt � µ∗ = (1/8) ln 3, where the average
fidelity F̄ is less than 2/3.

Now let us consider (L2,x, L3,x) noise which makes the EPR resource as εx(ρEPR) in
equation (1.6). Since εx(ρEPR) has two zero eigenvalues, one can construct the optimal
ensemble of pure states by two different ways explained in [4] and [5] respectively. It is not
difficult to show that both methods yield the same optimal ensemble whose explicit expression
is

εx(ρEPR) =
2∑

i=1

Pi |Xi〉〈Xi | (3.2)

where P1 = P2 = 1/2 and

|X1〉 = √
τ+|e1〉 + i

√
τ−|e3〉 |X2〉 = √

τ+|e1〉 − i
√

τ−|e3〉. (3.3)

Since the concurrence for the arbitrary 2-qubit state |ψ〉 = ∑4
i=1 αi |ei〉 is | ∑i α

2
i |, |X1〉 and

|X2〉 have the same concurrence

Cx = C(|X1〉) = C(|X2〉) = τ+ − τ− = e−4κt . (3.4)

Thus the entanglement of formation Ex and the Groverian measure Gx can easily be
computed by equations (2.5) and (2.6), respectively. The κt-dependences of Ex and Gx are
plotted in figure 2 as solid lines. As expected, Ex and Gx decrease from 1 and 1/

√
2 to 0 as κt

goes from 0 to ∞. This means that the noise disentangles εx(ρEPR) as we conjectured. Since
Ex = Gx = 0 at the κt → ∞, εx(ρEPR) should be separable in this limit. We can confirm this
directly from equation (3.3) because |X1〉 and |X2〉 reduce to (|0〉∓ |1〉)/√2 ⊗ (|0〉∓ |1〉)/√2
at the κt → ∞ limit. If one constructs the optimal ensembles for εy(ρEPR) and εz(ρEPR), one
can show in the same way that εy(ρEPR) = ∑2

i=1 Pi |Yi〉〈Yi | where P1 = P2 = 1/2 and

|Y1〉 = √
τ+|e1〉 + i

√
τ−|e4〉 |Y2〉 = √

τ+|e1〉 − i
√

τ−|e4〉, (3.5)

and εz(ρEPR) = ∑2
i=1 Pi |Zi〉〈Zi | where P1 = P2 = 1/2 and

|Z1〉 = √
τ+|e1〉 + i

√
τ−|e2〉 |Z2〉 = √

τ+|e1〉 − i
√

τ−|e2〉. (3.6)

It is easy to show Ex = Ey = Ez and Gx = Gy = Gz.

6
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Now, let us consider εI (ρEPR). Taking into account the partial transposition
[23–25] of εI (ρEPR) with respect to its subsystems, one can realize that εI (ρEPR) is separable
when κt � µ∗ = (1/8) ln 3. Following [5], one can derive the separable decomposition
εI (ρEPR) = ∑4

i=1 |Si〉〈Si | in this region, where |Si〉 are un-normalized vectors defined as

|S1〉 = 1
2 (eiθ1 |x1〉 + eiθ2 |x2〉 + eiθ3 |x3〉 + eiθ4 |x4〉)

|S2〉 = 1
2 (eiθ1 |x1〉 + eiθ2 |x2〉 − eiθ3 |x3〉 − eiθ4 |x4〉)

(3.7)
|S1〉 = 1

2 (eiθ1 |x1〉 − eiθ2 |x2〉 + eiθ3 |x3〉 − eiθ4 |x4〉)
|S1〉 = 1

2 (eiθ1 |x1〉 − eiθ2 |x2〉 − eiθ3 |x3〉 + eiθ4 |x4〉).
In equation (3.7) |xi〉 are

|x1〉 = −i

√
3τ̃+ − 1

2
|e1〉 |x2〉 = −i

√
τ̃−
2

|e2〉
(3.8)

|x3〉 = −i

√
τ̃−
2

|e3〉 |x4〉 = −i

√
τ̃−
2

|e4〉
and θi’s satisfy

3τ̃+ − 1

τ̃−
e2iθ1 + (e2iθ2 + e2iθ3 + e2iθ4) = 0. (3.9)

Since all |Si〉 have zero concurrence provided equation (3.9) holds, εI (ρEPR) becomes separable
in the region κt � µ∗. In order to see this explicitly let us consider the boundary of this region
κt = µ∗. At this point we have θ1 = 0 and θ2 = θ3 = θ4 = π/2 which yield the following
separable decomposition εI (ρEPR) = ∑4

i=1 Pi |s̃i〉〈s̃i | where P1 = P2 = P3 = P4 = 1/4 and

|s̃1〉 = (ω−|0〉 − ω+eiπ/4|1〉) ⊗ (ω−|0〉 − ω+e−iπ/4|1〉)
|s̃2〉 = (ω−|0〉 + ω+eiπ/4|1〉) ⊗ (ω−|0〉 + ω+e−iπ/4|1〉)

(3.10)
|s̃3〉 = (ω+|0〉 − ω−e−iπ/4|1〉) ⊗ (ω+|0〉 − ω−eiπ/4|1〉)
|s̃4〉 = (ω+|0〉 + ω−e−iπ/4|1〉) ⊗ (ω+|0〉 + ω−eiπ/4|1〉)

with ω± = (
√

3(
√

3 ± 1)/6)1/2.
In the κt � µ∗ region εI (ρEPR) is generally entangled. The optimal ensemble of

pure states can be constructed following [5]. The final expression of decomposition is
εI (ρEPR) = ∑4

i=1 Pi |Ii〉〈Ii | where P1 = P2 = P3 = P4 = 1/4 and

|I1〉 =
√

λ1|e1〉 − i
√

3λ2|e2〉

|I2〉 =
√

λ1|e1〉 + i

√
λ2

3
|e2〉 − 2i

√
2λ2

3
|e3〉

(3.11)

|I3〉 =
√

λ1|e1〉 + i

√
λ2

3
|e2〉 + i

√
2λ2

3
|e3〉 − i

√
2λ2|e4〉

|I4〉 =
√

λ1|e1〉 + i

√
λ2

3
|e2〉 + i

√
2λ2

3
|e3〉 + i

√
2λ2|e4〉

where λ1 = (3τ̃+ − 1)/2 and λ2 = τ̃−/2. It is easy to show that in the region κt � µ∗εI (ρEPR)

has a concurrence

CI = λ1 − 3λ2 = 3
2

(
e−8κt − 1

3

)
. (3.12)

Since εI (ρEPR) is a separable mixed state at κt � µ∗, CI equals zero in this region. Thus we
can write it in a form

CI = Max(λ1 − 3λ2, 0). (3.13)

7
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Inserting equation (3.13) into equations (2.5) and (2.6), one can easily compute the
entanglement of formation EI and the Groverian measure GI for εI (ρEPR).

The κt-dependences of EI and GI are plotted in figure 2 as dotted lines. As we conjectured
in section 1, EI and GI decrease from 1 and 1/

√
2 to 0 as κt goes from 0 to µ∗. This means

that when F̄ � 2/3, εI (ρEPR) cannot play any role as a quantum channel. This fact also
indicates that the entanglement is a genuine resource for the quantum communication. In
order to confirm that our conjecture is right, we will consider the different-axis noises in the
following section.

4. Different-axis noises

In this section we would like to consider the different-axis noises to confirm that our conjecture
is right. First let us consider (L2,x, L3,z) noise. For this case the master equation (1.5) changes
the EPR state ρEPR into

εxz(ρEPR) = 1

2

⎛
⎜⎜⎝

ν+ 0 0 e−2κt ν+

0 ν− e−2κt ν− 0
0 e−2κt ν− ν− 0

e−2κt ν+ 0 0 ν+

⎞
⎟⎟⎠ (4.1)

where ν± = (1 ± e−2κt )/2. Following the calculation of [15], one can easily show that the
average fidelity in this noise channel becomes

F̄ = 1
6 (3 + 2 e−2κt + e−4κt ). (4.2)

Thus F̄ becomes less than 2/3 when κt � ν∗ = ln(1 +
√

2)/2. We expect that εxz(ρEPR)

becomes separable in the region κt � ν∗. In fact, in this region εxz(ρEPR) can be expressed as
εxz(ρEPR) = ∑4

i=1 |s̄i〉〈s̄i | where |s̄i〉 are unnormalized vectors defined by the same as equation
(3.7), but |xi〉 are

|x1〉 = −iν+|e1〉 |x2〉 = −i
√

ν+ν−|e2〉
|x3〉 = −i

√
ν+ν−|e3〉 |x4〉 = −iν−|e4〉

(4.3)

and θi’s satisfy

e2iθ1ν2
+ + (e2iθ2 + e2iθ3)ν+ν− + e2iθ4ν2

− = 0. (4.4)

Since all |s̄i〉 have zero concurrence, εxz(ρEPR) is manifestly separable in κt � ν∗ as expected.

In the region κt � ν∗ we can derive an optimal ensemble of pure states. It needs
a tedious calculation, and the final expression is εxz(ρEPR) = ∑4

i=1 Pi |XZi〉〈XZi | where
P1 = P2 = ν+/(1 + 2ν+), P3 = P4 = 1/(2(1 + 2ν+)) and

|XZ1〉 = ν+|e1〉 − i
√

ν−(1 + ν+)|e2〉

|XZ2〉 = ν+|e1〉 + iν+

√
ν−

1 + ν+
|e2〉 − iν+

√
ν−(1 + 2ν+)

1 + ν+
|e3〉

(4.5)

|XZ3〉 = ν+|e1〉 + iν+

√
ν−

1 + ν+
|e2〉 + iν+

√
ν−(1 + 2ν+)

1 + ν+
|e3〉 − iν−

√
1 + 2ν+|e4〉

|XZ4〉 = ν+|e1〉 + iν+

√
ν−

1 + ν+
|e2〉 + iν+

√
ν−(1 + 2ν+)

1 + ν+
|e3〉 + iν−

√
1 + 2ν+|e4〉.

8
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Figure 3. The κt-dependence of the average fidelity F̄ , entanglement of formation E , concurrence
C and Groverian measure G for different-axis noisy channels. As expected, all entanglement
measures reduce to zero when κt � ν∗ = ln(1 +

√
2)/2.

Using equation (4.5) it is easy to compute the concurrence whose explicit expression is

Cxz = 1
2 (e−4κt + 2 e−2κt − 1) (4.6)

at κt � ν∗. Thus in the full range of κt C(ρEPR) can be written as

Cxz = Max
[

1
2 (e−4κt + 2 e−2κt − 1), 0

]
. (4.7)

Inserting equation (4.7) into equations (2.5) and (2.6), one can compute straightforwardly the
entanglement of formation and the Groverian measure for εxz(ρEPR).

For (L2,x, L3,y) and (L2,y, L3,z) noises the EPR state becomes respectively

εxy(ρEPR) = 1

2

⎛
⎜⎜⎝

τ+ 0 0 e−2κt

0 τ− 0 0
0 0 τ− 0

e−2κt 0 0 τ+

⎞
⎟⎟⎠

(4.8)

εyz(ρEPR) = 1

2

⎛
⎜⎜⎝

ν+ 0 0 e−2κt ν+

0 ν− e−2κt ν− 0
0 e−2κt ν− ν− 0

e−2κt ν+ 0 0 ν+

⎞
⎟⎟⎠ .

It is not difficult to show that the average fidelity for these is equal to equation (4.2) and
their concurrences are the same as equation (4.7), i.e. concurrence for εxz(ρEPR). The optimal
ensembles are εxy(ρEPR) = ∑4

i=1 Pi |XYi〉〈XYi | and εyz(ρEPR) = ∑4
i=1 Pi |YZi〉〈YZi |, where

P1 = P2 = ν+/(1 + 2ν+) and P3 = P4 = 1/(2(1 + 2ν+)). The optimal pure states |YZi〉
can be obtained from |XZi〉 by interchanging |e3〉 and |e4〉. The optimal vectors |XYi〉
are obtained from |XZi〉 by cyclic change, i.e. |e2〉 → |e3〉, |e3〉 → |e4〉, |e4〉 → |e2〉. The
remaining different-axis noises (L2,z, L3,x), (L2,z, L3,y), (L2,y, L3,x) generate similar quantum
channels to equations (4.1) and (4.8). They also yield the same average fidelities and the same
concurrences.

The average fidelity F̄ , concurrence C, entanglement of formation E and the Groverian
measure G are plotted in figure 3. As expected, all entanglement meaures reduce to zero at

9
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Figure 4. The κt-dependence of the average fidelity F̄ and the Groverian measure G for 3-qubit
mixed state ε(ρW ). The optimal ensemble for ε(ρW ) should make G zero when κt � ξ∗. This
may give valuable information for the construction of the optimal ensemble for higher-qubit states.

κt � ν∗. Thus our conjecture described in section 1 is perfectly correct. This fact indicates that
the entanglement of the quantum channel is a genuine physical resource in the teleportation
process. Also our conjecture may offer valuable clues to the optimal decomposition in the
higher-qubit mixed states. This will be discussed briefly in the following section.

5. Conclusion

In this paper we have examined the connection between the mixed-state entanglement and the
average fidelity F̄ using the usual EPR-state teleportation via noises. As we have shown, the
mixed-state entanglement becomes zero when F̄ � 2/3, which indicates that the entanglement
of quantum channel is a genuine resource for teleportation.

It is generally a non-trivial task to compute the entanglement of n-qubit mixed states when
n � 3. As far as we know, in addition, there is no way to find an optimal ensemble of pure
states when n � 3. Also we cannnot define the concurrence because there is no ‘magic’-like
basis in the higher-qubit system. However, the result of our paper may provide a valuable
information on the entanglement of higher-qubit mixed states. For example, let us consider
the 3-qubit mixed state

ε(ρW ) = 1

16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2α2 0 0
√

2α2 0
√

2α2 α2 0

0 2α1

√
2α1 0

√
2α1 0 0 α3

0
√

2α1 2β+ 0 α1 0 0
√

2α3√
2α2 0 0 2β− 0 α4

√
2α4 0

0
√

2α1 α1 0 2β+ 0 0
√

2α3√
2α2 0 0 α4 0 2β−

√
2α4 0

α2 0 0
√

2α4 0
√

2α4 2α4 0

0 α3

√
2α3 0

√
2α3 0 0 2α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)
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where

α1 = 1 + e−2κt + e−4κt + e−6κt

α2 = 1 + e−2κt − e−4κt − e−6κt

α3 = 1 − e−2κt − e−4κt + e−6κt (5.2)

α4 = 1 − e−2κt + e−4κt − e−6κt

β± = 1 ± e−6κt .

This mixed state is constructed when the quantum teleportation is performed with the W-state

|ψW 〉 = 1
2 (|100〉 + |010〉 +

√
2|001〉) (5.3)

if (L2,x, L3,x , L4,x) noise is introduced [26]. It has been shown in [26] that its average fidelity
between Alice and Bob is

F̄ = 1
24 (14 + 3 e−2κt + 2 e−4κt + 5 e−6κt ). (5.4)

Thus F̄ decreases from 1 to 7/12 as κt goes from 0 to ∞. From this fact we can conjecture
that the Groverian measure (2.2) for ε(ρW ) decreases from 1/

√
2 to 0 when κt goes from

0 to ξ∗ = 0.431 041 if we find the optimal ensemble of pure states for this mixed state.
This conjecture is described in figure 4. This information may give valuable clues to the
construction of the optimal ensemble of pure states in the 3- or higher-qubit system.

Another point we would like to note is on the second definition of the Groverian measure
G̃(ρ) defined in equation (2.3). Since it is not defined by the convex roof construction due
to its operational meaning, we cannot use the usual optimal ensemble technique to compute
it. Since, furthermore, it is expressed as equation (2.4) via Uhlmann’s theorem, we should
know how to compute the Groverian measure of n-qubit pure states with n � 4. Even if
we assume that we have the formula for the n-qubit pure-state Groverian measure, it is also
highly non-trivial to take a maximization over all possible purification. Since, however, it is a
genuine entanglement measure for mixed states, it should satisfy our conjecture. It may shed
light on the development of the computational technique for G̃(ρ) in the future.
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