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Any pure three-qubit state is uniquely characterized by one phase and four positive parame-
ters. The geometric measure of entanglement as a function of state parameters can have different
expressions that are eigenvalues of the stationarity equations. Each expression has its own appli-
cable domain; thus, the whole state parameter space is divided into subspaces that are ranges of
definition for corresponding eigenvalues. These subspaces are invariant under parametrization of
states and show the geometry of entangled regions of Hilbert space. The purpose of this paper
is to examine the phase (γ)-dependence of the entanglement and the applicable domains for the
most general qubit-interchange-symmetric three-qubit states. First, we compute the eigenvalues of
the non-linear eigenvalue equations and the nearest separable states for the permutation-invariant
three-qubit states with a fixed phase. Next, we compute the geometric entanglement measure,
find allocations of highly- and slightly-entangled states and deduce the boundaries of all subspaces.
Given a fixed γ, the boundary is the set of states for which eigenvalues of the stationarity equations
are degenerate. Thus, the boundary separates subspaces with different eigenvalues, and these eigen-
values coincide on the boundary. When γ 6= π/2, there are two invariant subspaces, and boundary
states are double degenerate. The entanglement of quantum states is phase independent in the first
subspace and increases with γ in the second subspace. However, there are three invariant subspaces
at γ = π/2, and boundary states are either doubly or triply (among them infinitely) degenerate.
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I. INTRODUCTION

Entanglement is a property of quantum states that
does not exist classically. Two or more subsystems of a
quantum system are said to be entangled if the state of
the entire system cannot be described in terms of a state
for each of the subsystems [1]. This property of com-
posite quantum systems, which exhibits quantum corre-
lations between subsystems, is a resource for many pro-
cesses in quantum information theory [2–5]. Since the
profound measures of entanglement, i.e., the entangle-
ment of formation and distillation [6–9], have not been
properly generalized to multiparticle systems, the study
of quantifying multipartite entanglement via other mea-
sures [10–14] is a necessity.

The entanglement of a given pure state can be charac-
terized by the distance to the nearest unentangled state
[15]. A whole class of such entanglement monotones,
based on the Euclidean distance of a given multipartite
state to the nearest fully separable state, was constructed
in Ref. 16. Subsequently, a geometrically motivated mea-
sure of entanglement, known as the geometric measure,
was introduced by Wei and Goldbart [17]. It is a decreas-

∗E-mail: dkpark@kyungnam.ac.kr

ing function of the maximal overlap Pmax and is suitable
for any partite system regardless of its dimensions. The
maximal overlap has several different names, and we list
all of them for the completeness: maximal probability of
success [13], entanglement eigenvalue [17], injective ten-
sor norm [18], the largest Schmidt coefficient [19] and
maximum singular value [20].

The geometric measure has an advantage in that it can
be computed analytically for multi-parameter states. Re-
cently, explicit expressions for the maximal overlap have
been derived for three- [17,20–23], as well as for multi-
qubit states [24–27]. It turned out that the maximal
overlap, depending on the coefficients of a quantum state
in a computational basis, can be interpreted in two dif-
ferent ways. It is equal to either the square of the largest
coefficient or the square of the circumradius of a cyclic
polygon constructed by using the coefficients of the quan-
tum state. However, there are states for which both for-
mulae are true, and the largest coefficients coincides with
that of circumradius. Consequently, these states, known
as shared quantum states [22], have two different nearest
product states that result in the same maximal overlap.
An example is the GHZ state (|000〉+ |111〉)/

√
2, where

|000〉 and |111〉 are two such “degenerate” product states
with Pmax = 1/2. The maximal overlap is the maximum
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singular value [20] of a given state; thus, the maximum
singular value of shared states is degenerate. Obviously,
this degeneracy is independent of the choice of the state
parameters (as well as of the choice of the computational
basis), and shared states form a parametrization invari-
ant set. On the other hand, shared states separate two
types of states, namely, those for which the maximal
overlap is the largest coefficient and those for which the
maximal overlap is the circumradius of a cyclic polygon.
This means that the whole parameter space is divided
into two subspaces, each of which has its own expression
for the geometric measure.

In spite of these achievements, still we lack sufficient
knowledge to classify generic three-qubit pure states by
using the geometric measure. They have five local uni-
tary (LU) invariants, including four positive parameters
and a gauge phase γ [19,28,29]. The maximal overlap of
these states is not known yet. Only three-qubit states,
which are expressed as linear combinations of four (or
less) orthogonal product states, have been considered so
far [22]. In fact, all of these states have real coefficients
because the phases of their coefficients can be eliminated
by LU-transformations. Thus, the contribution of the
gauge phase to the maximal overlap remains a mystery.
On the other hand, the most recent results [30] have
shown that the gauge phase plays an important role. It
parameterizes the family of maximally entangled states
and identifies W-class pure states with the boundary of
pure states.

In this paper, we would like to take into account the
effect of the gauge phase in the geometric measure of en-
tanglement. We compute the maximal overlap, as well as
the nearest product states, for a given value of the gauge
phase. We will show in the following that, depending on
the phase factor γ, the whole parameter space is divided
into two or three domains, each of which has a partic-
ular expression for the geometric measure. In addition,
we will show that most highly entangled states reside
near the boundaries of the domains. This is a direct
consequence of the fact that for all the maximally entan-
gled states, the maximum singular value should be de-
generate [30]; therefore, the maximally entangled states
are a subset of the shared states that form the bound-
aries. Thus, highly entangled states are located around
the maximally entangled states as one would expect. We
will call these highly entangled states as GHZ neighbors
because each of them can be transformed to the GHZ
state via stochastic local operations and classical com-
munications. The states located far from the boundaries
become less-entangled and eventually go to the prod-
uct states, but there is a different kind of the highly
entangled states. These states reside around W states
and can be converted to the W-state by invertible local
operations. We will call these highly entangled states
as W neighbors. The W neighbors are generally more
entangled than the GHZ neighbors from the aspect of
the geometric measure. However, the range of the GHZ
neighbors is much wider than the range of the W neigh-

bors.
The paper is organized as follows: In Section II, follow-

ing Ref. 21, we transform the nonlinear eigenvalue equa-
tions into the Lagrange multiplier equations. In Section
III, we solve the Lagrange multiplier equations analyti-
cally for γ = 0 and γ = π/2. It turns out that both cases
give five different eigenvalues. Also, every eigenvalue has
its own available region in the parameter space. In Sec-
tion IV, we compute the geometric measure for the γ = 0
case. It turns out that two of the five eigenvalues con-
tribute to the geometric measure. This means that the
whole parameter space is divided into two applicable do-
mains. In Section V, we compute the geometric measure
for the γ = π/2 case. We show that the whole parameter
space is divided into three applicable domains. In Sec-
tion VI, we compute the eigenvalues and the geometric
measure for γ = π/4 numerically. We show that when
γ = π/4, there are six different eigenvalues. However,
only two eigenvalues contribute to the geometric mea-
sure. In Section VII, based on the numerical calculation,
we examine the γ-dependence of the geometric entangle-
ment measure and the characteristics of the applicable
domains. We show that there are states that stay in one
applicable domain over the full range of the phase. The
remaining states move from one to another domain by
passing the boundary when the phase increases. We also
show that the phase factor either enhances or leaves un-
changed, but never decreases, the entanglement. In Sec-
tion VIII, a brief conclusion is given. In the appendix,
we have shown that the Lagrange multiplier equations
for arbitrary γ provide a solution whose multiplier con-
stant is zero.

II. GENERAL FORMALISM

In this section, we clarify our notations, give neces-
sary definitions, define three-qubit symmetric states and
transform nonlinear stationarity equations to a system
of linear equations.

1. Preliminaries

The maximal overlap of a given n-qubit pure state |ψ〉
is given by

Pmax = max
q1,q2,...,qn

|(〈q1| ⊗ 〈q2| ⊗ · · · ⊗ 〈qn|)|ψ〉|2, (1)

where the maximization is performed over single-qubit
pure states. Constituents |q1〉, |q2〉, ..., |qn〉, the nearest
product state from |ψ〉, can be computed via the non-
linear eigenvalue equations

〈q1| · · · 〈qn−1|ψ〉 = µi|qn〉, 〈q1| · · ·
〈qn−2|〈qn|ψ〉 = µi|qn−1〉, · · · ,
〈q2| · · · 〈qn|ψ〉 = µi|q1〉, (2)
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where µi’s are the eigenvalues of Eq. (2). Then, the
geometric measure G of the quantum state |ψ〉 is defined
as G(ψ) = 1− Pmax, where Pmax = max(µ2

i ).
Any pure three-qubit state can be written as a super-

position of five product states as follows [19,28,30]:

|ψ〉 = g|000〉+ t1|011〉+ t2|101〉+ t3|110〉
+eiγh|111〉, (3)

where the labels within each ket refer to qubits A, B, and
C (or 1, 2, and 3) in that order and in what follows we
will continue to identify qubits only by the ordering of
the labels. The coefficients of the decomposition in Eq.
(3) should be positive, and the phase should vary within
the interval [−π/2, π/2]; that is

g, t1, t2, t3, h ≥ 0, −π
2
≤ γ ≤ π

2
. (4)

The generalized Schmidt decomposition in Eq. (3) is
based on the geometric measure of entanglement and
is the best parametrization for our investigation. It
can be derived as follows. Consider any solution of
the stationarity equations in Eq. (2) for a given state
|ψ〉 and denote it by |q1q2q3〉. For each single-qubit
state |qk〉(k = 1, 2, 3), there is, up to arbitrary phase,
a unique single-qubit state |pk〉 orthogonal to it. From
these single-qubit states |qk〉 and |pk〉, one can form a
set of 8 three-qubit product states, which form a basis
in Hilbert space. Now, the state |ψ〉 can be written as
a linear combination of these product states and, owing
to stationarity equations, the coefficients of the product
states |q1q2p3〉, |q1p2q3〉, and |p1q2q3〉 should vanish. One
can also relabel the closest product |q1q2q3〉 as |000〉 and,
then, adjust the phases of the local states |0k〉 and |1k〉
so that the inequalities in Eq. (4) are satisfied.

The generalized Schmidt decomposition in Eq. (3) dis-
tinguishes all five types of inequivalent entanglements of
pure three-qubits [31]. Consider the first three types of
bi-separable states, namely, states bi-separable with re-
spect to the partitions A:BC, B:AC, and C:AB. The state
is bi-separable if and only if (see the brief proof in Ref.
30)

gh2 = 0 and t1t2t3 = 0. (5)

Moreover, the state is separable with respect to the A:BC
bipartition, that is, qubit A is unentangled, if either g =
t1 = 0 or h = t2 = t3 = 0. Similarly, the qubit B(C) is
unentangled if g = t2 = 0 or h = t1 = t3 = 0 (g = t3 = 0
or h = t1 = t2 = 0).

The state is a W-class state if and only if

either g = 0 and t1t2t3 6= 0,
or gh2 = 4t1t2t3 6= 0 and γ = ±π/2. (6)

All the remaining states are GHZ-class states. In conclu-
sion, the coefficients of the generalized Schmidt decom-
position in Eq. (3) are physically meaningful and classify
clearly pure three-qubit states.

For simplicity, we take quantum states that possess
permutational symmetry [32–34]. These states have
three independent parameters and, through an appro-
priate LU transformations, can be brought into the sym-
metric form

|ψ〉 = g|000〉+ t|011〉+ t|101〉+ t|110〉
+ eiγh|111〉, (7)

where we follow the notation of Ref. 30. We would like
to apply the general method proposed in Ref. 21 to the
symmetric states in Eq. (7). Since the maximal overlap
is an even function in γ, in what follows we will consider
only positive values of the phase.

2. Modified Stationarity Equations

In this subsection, we would like to present the method
for solving stationarity equations for the quantum state
given in Eq. (7). In the case of three-qubit pure states,
the method developed in Ref. 21 transforms the system
of nonlinear equations to a system of linear equations.
In spite of this essential simplification, it is impossible
to get analytic expressions for generic three-qubit states
because the solution to the linear eigenvalue equations
reduces to the finding the roots for a couple of algebraic
equations of degree six [22]. However, the permutation
symmetry of |ψ〉 reduces this pair of algebraic equations
to a single algebraic equation of degree six. Furthermore,
there is a solution, which holds for all values of the state
parameters [30]. The separation of this global solution
allows us to solve explicitly the eigenvalue equations for
γ = 0 and γ = π/2 and leads us to a quartic equation
for the remaining cases. The quartic is the highest-order
polynomial equation that can be solved by radicals in the
general case. However, expressions for roots are imprac-
tical, so we will carry out numerical analysis instead.

The method enables us to express the eigenvalues µ2

via the reduced densities ρA, ρB , and ρAB of qubits A
and B in the form

µ2 =
1
4

max
|s1|=|s2|=1

(1 + r1 · s1 + r2 · s2 +Gijs1is2j) , (8)

where

r1 = Tr
(
ρAσ

)
, r2 = Tr

(
ρBσ

)
,

Gij = Tr
(
ρABσi ⊗ σj

)
(9)

and σi’s are Pauli matrices. An explicit calculation shows

r ≡ r1 = r2 = (2ht cos γ, 2ht sin γ, g2 − h2 − t2)

Gij =

 2t(g + t) 0 −2ht cos γ
0 −2t(g − t) −2ht sin γ

−2ht cos γ −2ht sin γ g2 + h2 − t2

 . (10)

It is worthwhile noting that r1 is identical with r2 and
that Gij is a symmetric matrix. These properties arise
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due to the fact that we have chosen the symmetric state
in Eq. (7) under the qubit exchange. As will be shown
in the following, these properties drastically simplify the
calculation procedure. Since r1, r2, and Gij are explic-
itly derived, the eigenvalues µ2 can be computed if s1

and s2 are known. Due to the maximization in Eq. (8),
these vectors can be computed by solving the Lagrange
multiplier equations:

r1 +Gs2 = λ1s1, r2 +GT s1 = λ2s2, (11)

where the superscript T stands for transpose and the λi’s
are the Lagrange multiplier constants. From the proper-
ties r1 = r2 and Gij = Gji, Eq. (11) can be reduced to
a single equation

r +Gs = λs, (12)

where λ ≡ λ1 = λ2 and s ≡ s1 = s2. Letting

s = (sin θ cosϕ, sin θ sinϕ, cos θ), (13)

Eq. (12) reduces to

2ht cos γ + 2t(g + t) sin θ cosϕ− 2ht cos γ cos θ
= λ sin θ cosϕ, (14a)

2ht sin γ − 2t(g − t) sin θ sinϕ− 2ht sin γ cos θ
= λ sin θ sinϕ, (14b)

(g2 − t2)(1 + cos θ)− h2(1− cos θ)− 2ht cos γ sin θ cosϕ
− 2ht sin γ sin θ sinϕ = λ cos θ. (14c)

Solving for θ, ϕ, and λ from Eq. (14), one can compute
the eigenvalues for the symmetric canonical state in Eq.
(7) by inserting the solutions into Eq. (8). In the next
section, we will solve analytically Eq. (14) at the partic-
ular phases γ = 0 and γ = π/2. By making use of the
solutions, we will compute µi and Pmax = max(µ2

i ) for
the corresponding quantum states.

III. EIGENVALUES

In this section, Eq. (14) will be solved at γ = 0 and
π/2 separately. Since a numerical calculation is needed
to analyze the γ = π/4 case, we deal with this case in a
different section (see section VI).

1. γ = 0 Case

For the γ = 0 case, Eq. (14) reduces to

2t(g + t) sin θ cosϕ
+2ht(1− cos θ) = λ sin θ cosϕ, (15a)

−2t(g − t) sin θ sinϕ = λ sin θ sinϕ, (15b)
(g2 − t2)(1 + cos θ)

−h2(1− cos θ)
−2ht sin θ cosϕ = λ cos θ. (15c)

Equation (15b) implies that the solutions for the γ = 0
case are categorized by θ = 0, ϕ = 0, ϕ = π, and λ =
−2t(g− t)1. For the θ = 0 case, Eq. (15a) and Eq. (15b)
are automatically solved, and Eq. (15c) gives

λ = 2(g2 − t2). (16)

Now, s = (0, 0, 1) and Eq. (8), together with the normal-
ization condition g2 + 3t2 + h2 = 1, give a eigenvalue

µ2
P = g2. (17)

For the ϕ = 0 case, Eq. (15) is automatically solved,
and the remaining equations are

2t(g + t) sin θ + 2ht(1− cos θ) = λ sin θ, (18a)
(g2 − t2)(1 + cos θ)− h2(1− cos θ)

− 2ht sin θ = λ cos θ. (18b)

Since sin(θ/2) 6= 0, Eq. (18a) reduces to

λ = 2htz + 2t2 + 2tg, (19)

where z = tan(θ/2). Inserting Eq. (19) into Eq. (18b),
one can derive

(hz + g + t)(tz2 − hz + g − 2t) = 0, (20)

which implies that the ϕ = 0 case is categorized by the
following three cases:

z = −g + t

h
,

r+
2t
,

r−
2t
, (21)

where

r± = h±
√
h2 + 4t(2t− g). (22)

First, let us consider the case of z = −(g + t)/h. In
this case, Eq. (19) gives

λ = 0. (23)

Since, in this case,

sx = sin θ = − 2h(g + t)
h2 + (g + t)2

, sy = 0,

sz =
h2 − (g + t)2

h2 + (g + t)2
, (24)

it is straightforward to compute the eigenvalues for this
case, which is

µ2
1 =

g2h2 + t2(g + t)2

h2 + (g + t)2
. (25)

1 The case θ = π can be excluded by Eq. (15a) unless ht = 0.
If t = 0, |ψ〉 reduces to the usual GHZ state whose Pmax is
max(g2, h2). If h = 0, the maximal overlap probability for |ψ〉
is fully discussed in Ref. 22.
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Table 1. Eigenvalues for the γ = 0 case.

name eigenvalue λ available region

µ2
P g2 2(g2 − t2) all

µ2
1

g2h2 + t2(g + t)2

h2 + (g + t)2
0 all

µ2
+

(hr+ + 4t2)2

r2
+ + 4t2

hr+ + 2t(g + t) g ≤ 2t + h2/(4t)

µ2
−

(hr− + 4t2)2

r2
− + 4t2

hr− + 2t(g + t) g ≤ 2t + h2/(4t)

µ2
2

g(gh2 + 4t3)

g2 + h2 + 3gt
2t(t− g) (3g − 2t)h2 + 4g2t ≥ 0

Next, let us consider the cases of z = r±/2t simulta-
neously. In these cases, Eq. (19) gives

λ = hr± + 2t(g + t). (26)

Since, in these cases,

sx =
4tr±

r2± + 4t2
, sy = 0, sz = −

r2± − 4t2

r2± + 4t2
, (27)

one can show directly that the eigenvalues are

µ2
± =

(hr± + 4t2)2

r2± + 4t2
. (28)

Since z = tan(θ/2) should be real, the eigenvalues µ2
±

are available only when

g ≤ 2t+
h2

4t
. (29)

For the ϕ = π case Eq. (15) is automatically solved,
and the remaining equations are

−2t(g + t) sin θ + 2ht(1− cos θ) = −λ sin θ, (30a)
(g2 − t2)(1 + cos θ)− h2(1− cos θ)

+ 2ht sin θ = λ cos θ. (30b)

Since Eq. (30) can be derived from Eq. (18) by changing
θ → −θ, the solutions for this case are also categorized
by

z =
g + t

h
, −r+

2t
, −r−

2t
. (31)

Since Eq. (30a) reduces to

λ = −2htz + 2t2 + 2tg, (32)

comparison of Eq. (32) with Eq. (19) shows that the
Lagrange multiplier constant λ is the same as that for
the case of ϕ = 0. Since, furthermore, sx = sin θ cosϕ
and sz = cos θ are invariant under θ → −θ and ϕ = 0 →
ϕ = π, the eigenvalues for this case are exactly the same
as those for the ϕ = 0 case.

For the λ = 2t2 − 2gt case, Eq. (15) is automatically
solved, and the remaining equations are

2t(g + t) sin θ cosϕ+ 2ht(1− cos θ)
= −2t(g − t) sin θ cosϕ, (33a)

(g2 − t2)(1 + cos θ)− h2(1− cos θ)
− 2ht sin θ cosϕ = −2t(g − t) cos θ. (33b)

Since Eq. (33a) gives a relation

cosϕ = − h

2g
1− cos θ

sin θ
, (34)

combining Eq. (33b) and Eq. (34) enables us to express
cos θ and sin θ as

cos θ = − g2 − h2 + gt

g2 + h2 + 3gt
,

sin θ = ±
√

4g(g + 2t)(h2 + gt)
g2 + h2 + 3gt

. (35)

For the time being, we choose the upper sign in sin θ.
Then, Eq. (34) reduces to

cosϕ =
h

2

√
g + 2t

g(h2 + gt)
. (36)

At this stage, it is worthwhile noting that the eigenvalue
in this case is available when

(3g − 2t)h2 + 4g2t ≥ 0 (37)

because −1 ≤ cosϕ ≤ 1. Of course, the corresponding
sinϕ is

sinϕ = ±

√
3gh2 + 4g2t− 2h2t

4g(h2 + gt)
. (38)

Again, we choose the upper sign in sinϕ. Then, it is
straightforward to compute s, whose components are

sx = − h(g + 2t)
g2 + h2 + 3gt

,

sy =

√
(g + 2t)(3gh2 + 4g2t− 2h2t)

g2 + h2 + 3gt
,

sz = − g2 − h2 + gt

g2 + h2 + 3gt
. (39)
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Inserting Eq. (39) into Eq. (8) gives the eigenvalue for
this case as follow:

µ2
2 =

g(gh2 + 4t3)
g2 + h2 + 3gt

. (40)

It is easy to show that the choice of the other sign in
sin θ and sinϕ does not change the eigenvalue µ2

2. The
eigenvalues for the γ = 0 case are summarized in Table 1.

2. γ = π/2 Case

For the γ = π/2 case, Eq. (14) reduces to

2t(g + t) sin θ cosϕ = λ sin θ cosϕ, (41a)
−2t(g − t) sin θ sinϕ+ 2ht(1− cos θ)

= λ sin θ sinϕ, (41b)
(g2 − t2)(1 + cos θ)− h2(1− cos θ)
− 2ht sin θ sinϕ = λ cos θ. (41c)

Equation (41a) guarantees that the solutions for this case
are categorized by θ = 0, ϕ = π/2, ϕ = 3π/2, and
λ = 2t(g + t). Since the calculation procedure for the
first three cases are similar to those for the γ = 0 case,
we will briefly sketch the final result only. Although the
calculation procedure for the last case is also similar to
therefor the previous case, it gives a non-trivial available
region, which is important for computing the geometric
measures in the next section. Therefore, we will present
the last case in detail.

When θ = 0, the Lagrangian multiplier constant is the
same as for Eq. (16), and the corresponding eigenvalue
is

ν2
P = g2. (42)

When ϕ = π/2, there are three types of solutions, de-
pending on z = tan(θ/2). If z = (g − t)/h, we have a
vanishing Lagrange multiplier constant, and the corre-
sponding eigenvalue is

ν2
1 =

g2h2 + t2(g − t)2

h2 + (g − t)2
. (43)

When z = s±/2t, where

s± = h±
√
h2 + 4t(2t+ g), (44)

the corresponding Lagrange multiplier constants are
hs± − 2t(g − t), and the corresponding eigenvalues are

ν2
± =

(hs± + 4t2)2

s2± + 4t2
. (45)

It should be noted that ν2
± are available in the entire

parameter space while µ2
± in the γ = 0 case is restricted

by Eq. (29). As in the case of γ = 0, the ϕ = 3π/2 case

does not give a new eigenvalue. This case just reproduces
ν2
1 and ν2

±.
Finally, let us discuss the λ = 2t(g + t) case. For this

case, Eq. (41a) is automatically solved, and the remain-
ing equations are

2ht(1− cos θ)− 2t(g − t) sin θ sinϕ
= 2t(g + t) sin θ sinϕ, (46a)

(g2 − t2)(1 + cos θ)− h2(1− cos θ)− 2ht sin θ sinϕ
= 2t(g + t) cos θ. (46b)

Since Eq. (46a) gives a relation

sinϕ =
h

2g
1− cos θ

sin θ
, (47)

combining Eq. (46b) and Eq. (47) yields

cos θ = − g2 − h2 − gt

g2 + h2 − 3gt
. (48)

The requirement −1 ≤ cos θ ≤ 1 gives the first available
condition

(g − 2t)(h2 − gt) ≥ 0. (49)

Now, we choose sin θ as

sin θ =

√
4g(g − 2t)(h2 − gt)
g2 + h2 − 3gt

. (50)

Then, from Eq. (47) sinϕ becomes

sinϕ =
h

2

√
g − 2t

g(h2 − gt)
. (51)

Another requirement, −1 ≤ sinϕ ≤ 1, gives the second
available condition:

(g − 2t)(3gh2 − 4g2t+ 2h2t) ≥ 0. (52)

Choosing cosϕ as

cosϕ =

√
3gh2 − 4g2t+ 2h2t

4g(h2 − gt)
, (53)

it is straightforward to show that the eigenvalues for this
case is

ν2
2 =

g(gh2 − 4t3)
g2 + h2 − 3gt

. (54)

It is easy to show that the different choices in the sign
of sin θ and/or cosϕ do not change the eigenvalue. Al-
though the available region for ν2

2 is restricted by Eq.
(49) and Eq. (52), one can show that Eq. (52) implies
Eq. (49) already. To show this explicitly, let us consider
the g ≥ 2t case first. In this case, Eq. (52) imposes
h2 ≥ 4g2t/(3g + 2t). Therefore,

h2 − gt ≥ 4g2t

3g + 2t
− gt =

gt

3g + 2t
(g − 2t) ≥ 0.

Similarly, one can show that Eq. (52) implies Eq. (49) for
the g ≤ 2t region, too. Therefore, the available region
for ν2

2 is restricted by Eq. (52) only. The eigenvalues in
the γ = π/2 case is summarized in Table 2.
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Table 2. Eigenvalues for the γ = π/2 case.

name eigenvalue λ available region

ν2
P g2 2(g2 − t2) all

ν2
1

g2h2 + t2(g − t)2

h2 + (g − t)2
0 all

ν2
+

(hs+ + 4t2)2

s2
+ + 4t2

hs+ − 2t(g − t) all

ν2
−

(hs− + 4t2)2

s2
− + 4t2

hs− − 2t(g − t) all

ν2
2

g(gh2 − 4t3)

g2 + h2 − 3gt
2t(g + t) (g − 2t)(3gh2 − 4g2t + 2h2t) ≥ 0

3. h → 0 Limit

Since |ψ〉 is independent of γ in the h → 0 limit, all
eigenvalues for γ = 0 and γ = π/2 should be the same,
including the available region in the parameter space.
Note that µ2

+ = µ2
− and ν2

+ = ν2
− in the h → 0 limit.

In this limit, the eigenvalues for γ = 0 exactly coincide
with the eigenvalues for γ = π/2:

µ2
P = ν2

P = g2, µ2
1 = ν2

1 = t2,

µ2
2 = ν2

± =
4t3

3t+ g
, µ2

± = ν2
2 =

4t3

3t− g
. (55)

In addition, the first three eigenvalues in Eq. (55) are
available in the full parameter space, and the last one is
available only at g ≤ 2t. Thus, our calculational results
are perfectly consistent in the h→ 0 limit.

IV. GEOMETRIC MEASURE FOR γ = 0

In this section, we would like to compute the geometric
entanglement measure defined by

G(ψ) = 1− Pmax(ψ) (56)

for the γ = 0 case. In order to compute Pmax, we would
like to emphasize three points, which simplify the follow-
ing calculation. Firstly, note that Pmax is given by

Pmax = max(µ2
i ). (57)

Therefore, we should choose the largest eigenvalue from
all eigenvalues, each of which has its own available region
in the parameter space. Secondly, note that

µ2
+−µ2

− =
128ht7/2

(r2+ + 4t2)(r2− + 4t2)

(
2t+

h2

4t
− g

)3/2

. (58)

This means that µ2
− is always smaller than µ2

+ in the
available region g ≤ 2t + h2/(4t). Therefore, we can
exclude µ2

− from beginning for the computation of Pmax.
Thirdly, note that Pmax is obtained from the eigenvalues

whose Lagrange multiplier constants are positive [21].
This fact excludes µ2

1, too. Considering all of these facts
and the available regions, it is convenient to divide the
whole parameter space into the following four regions:

(region I) g ≥ 2t+
h2

4t
: Pmax = µ2

P (59)

(region II) t ≤ g ≤ 2t+
h2

4t
: Pmax = max(µ2

P , µ
2
+)

(region III) g ≤ t & C1 ≥ 0 : Pmax = max(µ2
+, µ

2
2)

(region IV) g ≤ t & C1 ≤ 0 : Pmax = µ2
+,

where

C1 = (3g − 2t)h2 + 4g2t. (60)

In order to compare µ2
+ with µ2

2, we compute µ2
+−µ2

2,
which is

µ2
+ − µ2

2 =
2

(r2+ + 4t2)(g2 + h2 + 3gt)

×
(
α1 + β1

√
h2 + 4t(2t− g)

)
, (61)

where

α1 = h6 + gh4t+ 8h4t2 + 20gh2t3 + 16g2t4

+4h2t2(2t2 − g2), (62)
β1 = h(h4 + 3gh2t+ 4g2t2 + 4h2t2 + 8gt3).

Since the last term in α1, 4h2t2(2t2−g2) is non-negative
in the region g ≤ t, both α1 and β1 are non-negative in
region III. In region III, therefore, Pmax becomes µ2

+.
In region II it has been shown in Ref. 30 that µ2

P = µ2
+

when D1 = 0, where

D1 = gh2 − (g + t)2(g − 2t). (63)

Therefore, region II should be divided into two regions,
i.e., D1 ≥ 0 and D1 ≤ 0. Simple consideration shows
that µ2

P ≥ µ2
+ when D1 ≤ 0 and µ2

P ≤ µ2
+ when D1 ≥ 0.

Combining all of these facts, one can conclude that

(region A) g ≥ 2t+
h2

4t
: Pmax = µ2

P (64)
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Fig. 1. (Color online) (a) Plot of the applicable domains in the (u, v)-plane for γ = 0. The principal domain Pmax = µ2
P

is located in the small-v, large-u region. This fact indicates that this domain is around the large-g region. (b) Plot of the
(u, v) dependence of Pmax for the γ = 0 case. Many highly entangled states are represented as a valley in this figure. Around
u ∼ 0 and (u ∼ π/2, v ∼ 0), there are many less entangled states. To compare the applicable domains with Pmax, we plot both
simultaneously in the (u, v) plane in (c). The black thick line is the boundary between domains. The blue color and the white
color represent the highly- and less-entangled states, respectively. (c) shows that the highly-entangled states reside around the
boundary between domains. (d) shows the v-dependence of Pmax for the shared states, i.e., for states located at the boundary.

(region B) t ≤ g ≤ 2t+
h2

4t
& D1 ≤ 0 : Pmax = µ2

P

(region C) t ≤ g ≤ 2t+
h2

4t
& D1 ≥ 0 : Pmax = µ2

+

(region D) g ≤ t : Pmax = µ2
+.

Now, we would like to unify the regions as much as
possible to simplify the expression of Pmax. First, one
can show that D1 is always non-positive in region A as
follows: Since h2 ≤ 4t(g− 2t) in region A, in this region,

D1 = gh2−(g+t)2(g−2t) ≤ −(g−2t)(g−t)2 ≤ 0. (65)

Second, one can show easily that D1 is always non-
negative in region D as follows: In this region,

D1 = gh2 + (g + t)2(2t− g) ≥ 0 (66)

because both terms are non-negative. Combining these
facts and Eq. (64), Pmax can be expressed as

Pmax =

{
µ2

P when D1 ≤ 0
µ2

+ when D1 ≥ 0.
(67)

Consider now states withD1 = 0 (designated as shared
quantum states in Ref. 22). For these states, both eigen-
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values µ2
P and µ2

+ coincide, so the maximal eigenvalue
of the nonlinear equations, Eq. (2), is doubly degener-
ate. For a pure state of three qubits, it is possible to
write different generalized Schmidt decompositions by
using only five elements of the whole Hilbert space ba-
sis. Each decomposition has its own entanglement pa-
rameters that are LU-invariant quantities. Regardless
of the choice of the generalized Schmidt decomposition
(and state parameters), the maximal eigenvalue of Eq.
(2) is either degenerate or not. Therefore, the set of
shared quantum states does not depend on a particular
parametrization of three-qubit states and presents a spe-
cial class of states in Hilbert space. The same is true for
the two classes of states given by D1 < 0 and D1 > 0.
Indeed, one cannot transform a state from D1 < 0 to
D1 > 0 (and vice-versa) by re-parameterizations or LU-
transformations because in order to do so, one has to pass
the surface D1 = 0, meaning that one is able to change
the degeneracy of eigenvalues of stationarity equations,
Eq. (2). Thus, the Hilbert space is divided into two sub-
spaces, namely, D1 < 0 and D1 > 0, and these subspaces
are separated by shared states D1 = 0. Shared states can
be ascribed to both subspaces and, owing to this, may
acquire new features [21].

In order to understand the behavior of Pmax more
clearly, we introduce the two parameters u and v as fol-
lows:

g = sinu cos v, t = sinu sin v/
√

3, h = cosu, (68)

with 0 ≤ u, v ≤ π/2. Then, one can plot the applicable
domains D1 ≤ 0 and D1 ≥ 0 in the u− v plane, which is
Fig. 1(a). As Fig. 1(a) shows, the domain for D1 ≤ 0 is
biased in the small-v, large-u region. This indicates that
the domain forD1 ≤ 0 are around the large-g region. The
remaining region is the domain for D1 ≥ 0. As will be
shown in the next section, the number of the applicable
domains for the γ = π/2 case is not two, but three. This
means that the phase factor γ has a great impact on the
geometric measure of entanglement.

Figure 1(b) shows the (u, v) dependence of Pmax given
in Eq. (67). At u = 0, which means h = 1, Pmax becomes
1 because it is a separable state. At v = 0 and u =
π/2, which means that g = 1, Pmax becomes 1 again.
Between them, there is valley, which represents the set
of highly entangled states. There is a different kind of
highly entangled states around u = v = π/2. These
highly entangled states are states located near a W state,
|W 〉 = (1/

√
3)(|011〉+ |101〉+ |110〉).

In order to compare Pmax with the applicable domains,
we plot Pmax and the boundary of domains simultane-
ously in the u−v plane in Fig. 1(c). In Fig. 1(c), the black
thick line is a boundary of the domains. The thick blue
and the light-blue (or white) colors represent the highly-
entangled and the less-entangled states, respectively. In
the right-upper corner, there are many highly-entangled
states, which are located near the W state. Another type
of highly entangled state resides near the boundary of the
applicable domains. Apart from the boundary more and

more, quantum states lose entanglement and eventually
reduce to separable states.

Since the shared states, i.e., states located at the
boundary of the applicable domain, may have special
features for quantum information processing [21,22], we
would like to compute Pmax for the shared states located
at D1 = 0. The condition D1 = 0 makes it possible to
express u in terms of v. Therefore, Pmax at the boundary
can be easily expressed in terms of v only as

Pmax =
cos3 v

cos v +
(
cos v + 1√

3
sin v

)2 (
cos v − 2√

3
sin v

) .
(69)

The v-dependence of Pmax in Eq. (69) is plotted in Fig.
1(d). Figure 1(d) shows that Pmax increases monoton-
ically with increasing v from 1/2 (at v = 0) to 4/7 (at
v = tan−1

√
3/2).

Now, we consider several special cases. The first ex-
ample is t = 1/

√
3 and g = h = 0. In this case,

D1 = 2
√

3/9 > 0, and r+ =
√

8/3, which gives
Pmax = 4/9. The second example is t = 0 and g ≥ h.
In this case, D1 = −g(g2 − h2) ≤ 0, and Pmax = g2.
The third example is t = 0 and g ≤ h. In this case,
D1 = g(h2 − g2) ≥ 0, and r+ = 2h, which gives
Pmax = h2. The second and the third examples are
consistent with Pmax(GHZ) = max(|α|2, |β|2), where
|GHZ〉 = α|000〉 + β|111〉. The fourth example is
the g = 0 case. In this case, D1 = 2t3 ≥ 0, and
r+ = h+

√
h2 + 8t2, which results in

Pmax =
(h4 + 8h2t2 + 8t4) + h(h2 + 4t2)

√
h2 + 8t2

(h2 + 6t2) + h
√
h2 + 8t2

.

(70)

One can show that various limits of Eq. (70) are consis-
tent with previously-derived results. The last example is
the h = 0 case. In this case, it is easy to show that

Pmax =

{
g2, when g ≥ 2t

4t3/(3t− g), when g ≤ 2t.
(71)

Equation (71) is perfectly in agreement with the result
of Ref. 22.

V. GEOMETRIC MEASURE FOR γ = π/2

In this section, we would like to compute the geometric
entanglement measure for the γ = π/2 case. From the
constraint of the positive Lagrange multiplier constant,
we can exclude ν2

1 and ν2
− from the beginning stage for

the computation of the geometric measure. Next, we
should examine the sign of the Lagrange multiplier con-
stant for ν2

+, that is,

λ+ = hs+ − 2t(g − t). (72)
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Fig. 2. Pictorial representation for C2 ≥ 0, C2 ≤ 0, C+ ≥ 0,
and C+ ≤ 0 when g ≥ t.

It is easy to show that λ+ ≥ 0 in the g ≤ t region. Also,
it is straightforward to show that λ+ ≥ 0 when C+ ≥ 0
and that λ+ ≤ 0 when C+ ≤ 0, where

C+ = h2(2g + t)− t(g − t)2. (73)

Examining Table 2 and Eq. (73) lead us to divide the
whole parameter space into the following ten regions:

(i) g ≥ 2t (74)
(region I) C2 ≤ 0 & C+ ≤ 0 : Pmax = ν2

P

(region II) C2 ≥ 0 & C+ ≤ 0 :
Pmax = max(ν2

P , ν
2
2) (75)

(region III) C2 ≤ 0 & C+ ≥ 0 :
Pmax = max(ν2

P , ν
2
+) (76)

(region IV) C2 ≥ 0 & C+ ≥ 0 :
Pmax = max(ν2

P , ν
2
+, ν

2
2) (77)

(ii) t ≤ g ≤ 2t
(region V) C2 ≥ 0 & C+ ≤ 0 :

Pmax = ν2
P (78)

(region VI) C2 ≤ 0 & C+ ≤ 0 :
Pmax = max(ν2

P , ν
2
2) (79)

(region VII) C2 ≥ 0 & C+ ≥ 0 :
Pmax = max(ν2

P , ν
2
+) (80)

(region VIII) C2 ≤ 0 & C+ ≥ 0 :
Pmax = max(ν2

P , ν
2
+, ν

2
2) (81)

(iii) g ≤ t

(region IX) C2 ≤ 0 : Pmax = max(ν2
+, ν

2
2)

(region X) C2 ≥ 0 : Pmax = ν2
+,

where

C2 = (3g + 2t)h2 − 4g2t. (82)

Although the whole space is divided into ten regions,
one can show that some regions do not exist. In order to
show this, it is convenient to introduce

h2 =
4g2t

3g + 2t
, h+ =

t(g − t)2

2g + t
. (83)

Then, their difference becomes

h2 − h+ =
t(g + t)2

(3g + 2t)(2g + t)
(5g − 2t). (84)

Fig. 3. Pictorial representations for C2 ≥ 0, C2 ≤ 0, C+ ≥
0, C+ ≤ 0, C3 ≥ 0, and C3 ≤ 0 when (a) t ≤ g ≤ 2t and (b)
g ≥ 2t.

Equation (84) implies that h2 ≥ h+ in the region g ≥ t.
Then, the regions C2 ≥ 0, C2 ≤ 0, C+ ≥ 0, and C+ ≤ 0
when g ≥ t can be represented as in Fig. 2. With the
help of Fig. 2, it is easy to understand that there is no
region that satisfies both C2 ≥ 0 and C+ ≤ 0 when g ≥ t.
This implies that region II and region V do not exist in
the whole parameter space.

In order to compare ν2
P with ν2

2 , we compute ν2
P − ν2

2 ,
which is

ν2
P − ν2

2 =
g(g + t)(g − 2t)2

g2 + h2 − 3gt
. (85)

Therefore, the sign of ν2
P −ν2

2 is determined by g2 +h2−
3gt. If C2 ≥ 0, h2 ≥ h2 and

g2 + h2 − 3gt ≥ 3g(g − 2t)(g + t)
3g + 2t

. (86)

Therefore, if C2 ≥ 0 in the g ≥ 2t region, ν2
P ≥ ν2

2 .
Thus, we can exclude ν2

2 in region IV. Similarly, one can
show that if C2 ≤ 0 in the t ≤ g ≤ 2t region, ν2

P ≤ ν2
2 .

Therefore, we can exclude ν2
P in regions VI and VIII.

Next, we compute ν2
P − ν2

+, which is

ν2
P −ν2

+ =
2

s2+ + 4t2
(
α2 + β2

√
h2 + 4t(2t+ g)

)
, (87)

where

α2 = −h4 + (g + 2t)(g − 4t)h2 + 2t(g − t)(g + 2t)2,
β2 = h(g2 − h2 − 4t2). (88)

A direct calculation shows that in the g ≥ t region, ν2
P =

ν2
+ when C3 = 0, where

C3 = gh2 − (g − t)2(g + 2t). (89)

In addition, a simple consideration shows that in the
g ≥ t region, ν2

P ≥ ν2
+ when C3 ≤ 0, and ν2

P ≤ ν2
+ when

C3 ≥ 0.
In order to check which eigenvalue is dominant in each

region, it is convenient to introduce another parameter

h3 =
(g − t)2(g + 2t)

g
. (90)

Then, it is easy to show that

h+ ≤ h2 ≤ h3 when 2t ≤ g, (91)
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Fig. 4. (Color online) (a) Plot of the applicable domains for the γ = π/2 case in the (u, v)-plane. Unlike the γ = 0 case
there are three applicable domains in this case. The principal domain Pmax = ν2

P is larger than Pmax = µ2
P in the γ = 0 case.

This fact seems to indicate that the principal domain increases its territory with increasing γ. It is important to note that the
domain Pmax = ν2

+ does not reach the h = 0 axis. This implies the consistency of the h → 0 limit. (b) (u, v) dependence of
Pmax. The highly entangled states forms a valley between two mountains. (c) Plot of Pmax and the applicable domains in the
(u, v)-plane. The boundaries of the domains are represented by thick black lines. Many highly entangled states reside around
the boundaries and in the domain Pmax = ν2

2 . This is mainly due to the fact that there are two LU-equivalent W states for the
γ = π/2 case.

Fig. 5. (Color online) Pmax at the boundaries of the applicable domains when γ = π/2. (a) shows the v-dependence of Pmax

for C3 = 0 (boundary between ν2
P and ν2

+) and C2 = 0 (boundary between ν2
2 and ν2

+). (b) shows the u-dependence of Pmax for
the boundary between ν2

P and ν2
2 . The dotted line denotes 4/9, which is Pmax of the W state.

h+ ≤ h3 ≤ h2 when t ≤ g ≤ 2t.

Equation (91) enables us to represent C2 ≥ 0, C2 ≤ 0,
C+ ≥ 0, C+ ≤ 0, C3 ≥ 0, and C3 ≤ 0 in a one-dimensional
coordinate, which is illustrated in Fig. 3. With the help
of Fig. 3, one can show easily that in region III, C3 is
always non-positive; therefore, Pmax becomes ν2

P . Using
Fig. 3(a), Pmax in region VII is ν2

+. Using Fig. 3(b),
again one can show that region IV is divided into

(region IV-a) C2 ≥ 0 & C3 ≤ 0 : Pmax = ν2
P (92)

(region IV-b) C2 ≥ 0 & C3 ≥ 0 : Pmax = ν2
+.

Finally, we compute ν2
+ − ν2

2 , which is

ν2
+ − ν2

2 =
2

(s2+ + 4t2)(g2 + h2 − 3gt)

×
(
α3 + β3

√
h2 + 4t(2t+ g)

)
, (93)

where

α3 = h6 + t(8t− g)h4

−4t2(g2 + 5gt− 2t2)h2 + 16g2t4,

β3 = h
[
h4 + t(4t− 3g)h2 + 4gt2(g − 2t)

]
. (94)

One can show directly that ν2
+ − ν2

2 = 0 when C2 = 0.
Also, it is straightforward to show that in the g ≤ 2t
region, ν2

+ is always smaller than ν2
2 . Therefore, we can

exclude ν2
+ in regions VIII and IX. Combining all of these

facts, one can express Pmax for the γ = π/2 case as
follows:

(i) g ≥ 2t

Pmax =

{
ν2
+ C2 ≥ 0 & C3 ≥ 0
ν2

P remaining region

(i) g ≤ 2t
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Pmax =

{
ν2
+ C2 ≥ 0
ν2
2 C2 ≤ 0.

(95)

Unlike the γ = 0 case, the whole parameter space is
divided into the three applicable domains. Now we have
three types of shared states:

• doubly degenerate states ν2
+ = ν2

P 6= ν2
2 ,

• doubly degenerate states ν2
+ = ν2

2 6= ν2
P ,

• triply (some of them infinitely [30]) degenerate
states ν2

+ = ν2
2 = ν2

P .

Introducing the parameters u and v as Eq. (68), we
plot the three applicable domains in the u-v plane in Fig.
4(a). Around the h = 0 axis, there are two domains, i.e.,
ν2

P and ν2
2 . Since ν2

P and ν2
2 go to µ2

P and µ2
+ in the h→ 0

limit, this guarantees that the h → 0 limit is consistent
with the same limit as in the γ = 0 case. The applicable
domain for ν2

P is a little bit larger than the domain µ2
P

for the γ = 0 case. The point (u = cos−1(
√

2/3), v =
tan−1(

√
3/2)) is shared by three domains. This point

corresponds to

|ψW 〉 =
2
3
|000〉+

1
3

(|011〉+ |101〉+ |110〉)

+i
√

2
3
|111〉. (96)

This is LU-equivalent with |W 〉 = (1/
√

3)(|100〉+|010〉+
|001〉), as shown in Ref. 30.

In Fig. 4(b), we plot the (u, v) dependence of Pmax

given in Eq. (95). Like Fig. 1(b) the highly entangled

states are represented as a valley in this figure. Figure
4(b) seems to show that there exists an alley in the valley,
which ends at u = v = π/2. Along this alley, so many
highly entangled states are located. Comparing Fig. 4(b)
with Fig. 1(b), one can realize that there are many more
highly-entangled states for the γ = π/2 case than the
γ = 0 case. This is mainly due to the fact that there are
two LU-equivalent W states when γ = π/2.

Figure 4(c) shows the geometric entanglement mea-
sure and the applicable domains simultaneously in the
u-v plane. Figure 4(c) shows that around two W states
there are so many highly entangled states, which we
would like to call W neighbors. Especially, the neighbors
of |ψW 〉 in Eq. (96) gather along the C3 = 0 line. Be-
sides the W neighbors, there are many highly entangled
states around the boundary of the applicable domains.
These are the neighbors of the shared states [22], and
we would like to call them the GHZ neighbors. The GHZ
neighbors are slightly less-entangled compared to the W
neighbors. However, the number of the GHZ neighbors
is much larger than that of the W neighbors.

The maximal overlap probability Pmax at the bound-
aries can be computed as follows: The boundary condi-
tions C2 = 0 (between ν2

2 and ν2
+) and C3 = 0 (between

ν2
P and ν2

+) make it possible to express u in terms of
v. Then, it is straightforward, but a slightly tedious, to
express Pmax in terms of v only as follows:

Pmax =

{
f1(v) 0 ≤ v ≤ tan−1(

√
3/2)

f2(v) tan−1(
√

3/2) ≤ v ≤ π/2,
(97)

where

f1(v) =
cos3 v

cos v +
(
cos v − 1√

3
sin v

)2 (
cos v + 2√

3
sin v

) ,
f2(v) =

4 sin v(3
√

3 cos v + 2 sin v)[9 cos3 v −
√

3 sin2 v(3
√

3 cos v + 2 sin v)]
9(3

√
3 cos v + 2 sin v + 4 sin v cos2 v)(3 cos v +

√
3 sin v)(

√
3 cos v − 2 sin v)

. (98)

The v-dependence of Pmax is plotted in Fig. 5(a). In
the region 0 ≤ v ≤ tan−1(

√
3/2), which is a bound-

ary between ν2
P and ν2

+, Pmax decreases from 1/2 to
4/9. These two values correspond to the usual GHZ and
|ψW 〉 states. In the region tan−1(

√
3/2) ≤ v ≤ π/2,

which is a boundary between ν2
2 and ν2

+, Pmax increases
from 4/9 to 0.57 and decreases to 4/9 again, which corre-
sponds to the usual W state (1/

√
3)(|100〉+|010〉+|001〉).

At the boundary between ν2
P and ν2

2 , v is fixed by
v = tan−1(

√
3/2). Then, Pmax can be easily expressed

in terms of u only in the form

Pmax =
4
7

sin2 u, (cos−1
√

2/3 ≤ u ≤ π/2). (99)

This is plotted in Fig. 5(b), which shows that Pmax in-
creases monotonically with increasing u from 4/9 to its
maximal value 0.571.

Finally, we consider several special cases. The first ex-
ample is the h = 0 case. In this case, C2 = −4g2t ≤ 0
and C3 = −(g − t)2(g + 2t) ≤ 0, which results an ex-
pression identical to that of Eq. (71). Therefore, results
for both the γ = 0 and the γ = π/2 cases coincide with
each other in the h→ 0 limit. The second example is the
t = 0 case. It is easy to show that in this case, Pmax = g2

when g ≥ h and that Pmax = h2 when g ≤ h. This
is consistent with Pnax(GHZ) = max(|α|2, |β|2) when
|GHZ〉 = α|000〉+ β|111〉.
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Fig. 6. (Color online) (a) Plot of the applicable domains for the γ = π/4 case. In this case, there are two applicable domains.
The principal domain Pmax = ρ2

P , is little bit larger than the Pmax = µ2
P domain for γ = 0 and little bit smaller than the

Pmax = ν2
P domain for γ = π/2. This fact indicates that the principal domain increases its territory with increasing γ. (b)

(u, v) dependence of Pmax. As in the γ = 0 case, the highly entangled states form a valley between two mountains. (c) Plot of
Pmax and the applicable domains in the (u, v)-plane. Many highly entangled states reside around the boundary of the domains
and near the W state.

VI. EIGENVALUES AND GEOMETRIC
MEASURE FOR γ = π/4 : NUMERICAL

APPROACH

In this section, we will compute the eigenvalues and
the geometric measure for the γ = π/4 case.

1. Eigenvalues

For γ = π/4, Eq. (14) reduces to

2t(g + t) sin θ cosϕ+
√

2ht(1− cos θ)
= λ sin θ cosϕ, (100a)

−2t(g − t) sin θ sinϕ+
√

2ht(1− cos θ)
= λ sin θ sinϕ, (100b)

(g2 − t2)(1 + cos θ)− h2(1− cos θ)

−
√

2ht sin θ(sinϕ+ cosϕ) = λ cos θ. (100c)

When θ = 0, Eq. (100a) and Eq. (100b) are automati-
cally solved, and Eq. (100c) gives

λ = 2(g2 − t2). (101)

Since s = (0, 0, 1) for this case, from Eq. (8), the corre-
sponding eigenvalue is

ρ2
P = g2. (102)

When sin θ 6= 0, Eq. (100a) and Eq. (100b) reduce to

z =
λ− 2gt− 2t2√

2ht
cosϕ =

λ+ 2gt− 2t2√
2ht

sinϕ, (103)

where z = tan(θ/2). From Eq. (103), one can compute
ϕ, if λ is known, by using

tanϕ =
(λ− 2t2)− 2gt
(λ− 2t2) + 2gt

. (104)

Deriving sinϕ+cosϕ from Eq. (103) and inserting it into
Eq. (100c), one can derive the expression for z2 in the
form

z2 =

[
(λ− 2t2)2 − 4g2t2

]
(λ− 2g2 + 2t2)

(λ− 2h2)(λ− 2t2)2 − 8h2t2(λ− 2t2)− 4g2t2(λ− 2h2)
. (105)

On the other hand, one can derive a different expression
for z2 directly from Eq. (103):

z2 =
(λ− 2gt− 2t2)2

2h2t2
(1 + tan2 ϕ)−1

=

[
(λ− 2t2)2 − 4g2t2

]2
4h2t2 [(λ− 2t2)2 + 4g2t2]

. (106)
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Equating Eq. (105) with Eq. (106) yields an equation for
solely λ:

λf(λ) = 0, (107)

where

f(λ) = λ4 − 2(h2 + 4t2)λ3 − 4t2(2g2 − h2 − 6t2)λ2

+8
[
t4(h2 − 4t2) + g2(3h2t2 + 4t4)

]
λ

+16t4
(
g4 − 5g2h2 − 2g2t2 − h2t2 + t4

)
. (108)

Equation (107) guarantees the existence of an eigenvalue
for λ = 0 as in the γ = 0 and γ = π/2 cases. In fact, one
can show that there exists an eigenvalue corresponding
to λ = 0 for arbitrary γ. We have shown this fact in
Appendix A.

When λ = 0, Eq. (104) and Eq. (106) reduce to

z2 =
(g2 − t2)2

h2(g2 + t2)
, tanϕ = −g + t

g − t
. (109)

Combining Eq. (103) and Eq. (109), the possible solu-
tions for θ and ϕ are

z = ± g2 − t2

h
√
g2 + t2

, cosϕ = ∓ g − t√
2(g2 + t2)

,

sinϕ = ± g + t√
2(g2 + t2)

. (110)

It is easy to show that both solutions in Eq. (110) give
the same eigenvalue, which is

ρ2
0 =

g2(g2 + t2)h2 + t2(g2 − t2)2

h2(g2 + t2) + (g2 − t2)2
. (111)

Finally, let us consider f(λ) = 0. It is worthwhile
noting that in the h → 0 limit, f(λ) = 0 reduces to
(λ − 2gt − 2t2)2(λ + 2gt − 2t2)2 = 0. Therefore, the
eigenvalues corresponding to f(λ) = 0 should coincide
with µ2

± and µ2
2 for the γ = 0 case, and with ν2

± and
ν2
2 for the γ = π/2 case in the h → 0 limit. Equation
f(λ) = 0 gives four solutions for λ, say λ1, λ2, λ3, and
λ4. We ordered the solutions by using the fact that the
h→ 0 limit of λ1 and λ2 is −2t(g− t) and that the same
limit of λ3 and λ4 is 2t(g + t). Then, the corresponding
eigenvalues, say ρ2

1, ρ
2
2, ρ

2
3, and ρ2

4, can be computed
numerically.

2. Geometric Measure

Using eigenvalues ρ2
P , ρ2

0 derived analytically and
ρ2

i (i = 1, 2, 3, 4) computed numerically, one can com-
pute Pmax for the γ = π/4 case. Since each eigenvalue
has its own available region, we checked this region by
imposing Re[λ] = 0, −1 ≤ sin θ ≤ 1, −1 ≤ cos θ ≤ 1,
−1 ≤ sinϕ ≤ 1, and −1 ≤ cosϕ ≤ 1. Although there
are six different eigenvalues, the numerical calculation

shows that only ρ2
P and ρ2

4 contribute to the geometric
measure. This indicates that the whole parameter space
is divided into two applicable domains. These two do-
mains are represented in the u − v plane in Fig. 6(a).
The domains ρ2

P is slightly larger than domain µ2
P and

slightly smaller than the domain ν2
P . This fact seems to

indicate that the domain containing g = 1 extends its
territory with increasing γ.

Figure 6(b) shows the (u, v) dependence of Pmax for
γ = π/4. Similar to the γ = 0 and the π/2 cases,
many highly entangled states reside at the valley between
two mountains. Another highly entangled state resides
around u = v = π/2, which corresponds to a W state.
The alley that appears in Fig. 4(b) does not appear in
this case. This seems to be due to the fact that there is
only one W state in the γ = π/4 case.

Figure 6(c) shows the (u, v) dependence of Pmax and
its domains. As expected, the highly entangled states
are located around the boundary and the W state.

VII. THE γ-DEPENDENCE OF THE
MAXIMAL OVERLAP

In this section, we would like to describe the γ-
dependence of Pmax and the applicable domains. The
results described in this section are based on numerical
calculations. However, in order to gain a better insight
into the numerical results, we start from a preliminary
analytic description.

The solutions to Eq. (14) are degenerate if the three
equations linearly depend on the value of the Lagrange
multiplier given by Eq. (16)2 . This means that det(G−
λ011) = 0, which has the following explicit form:

(g2−t2)2(g2−4t2) = gh2(g3−3gt2+2t3 cos 2γ). (112)

This condition singles out all permutation-invariant
shared states and is the equation for the boundary sur-
face at t1 = t2 = t3. Although we have considered shared
states for a given γ so far, Eq. (112) shows that there is a
single set of shared states and a unique boundary surface
separating different subspaces. To complete the picture,
we fix other parameters and vary the phase in this sec-
tion.

In terms of the variables (u, v), Eq. (112) imposes a
condition on the three angles u, v and γ. Consequently,
knowing two of them, one can find the third angle (pro-
vided Eq. (112) admits a solution) at which the state
becomes shared. In particular, we will fix a pair u, v and
consider the phase dependence of the maximal overlap.
Additionally, we will mark the phase at which the state

2 This choice means that if the eigenvalues coincide, then the La-
grange multipliers should also coincide. See the proof in Ref.
30.
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Fig. 7. (Color online) The solid lines are plots of
the γ-dependence of Pmax when u = 1.1 and v =
0.606, 0.65, 0.7, 0.75, 0.8, 0.9. The dotted line is the set of
shared states for u = 1.1. When v = 0.65 and 0.7, Pmax de-
creases monotonically until it intersects the dotted line and
then remains constant with increasing γ. This fact indicates
that the corresponding quantum states move from a type-II
domain to a type-I domain at the value of γ for which the
state lies on the boundary. When v = 0.606, 0.75, 0.8, and
0.9, Pmax exhibits either constant or strictly decreasing be-
havior everywhere. This fact indicates that the corresponding
quantum states stay in one of the applicable domains over the
full-range of γ.

becomes shared. That should allow us to see how the
state is moving from one to another subspace by passing
the boundary surface when γ is increasing.

The first issue we would like to explore is about the
number of applicable domains. From the fact that there
are two domains each at γ = 0 and γ = π/4, and three
domains at γ = π/2, one can naturally conjecture the
existence of a critical γ, say γc, such that there are two
domains for γ < γc and three domains for γ > γc. In or-
der to conjecture γc, therefore, we have checked the num-
ber of domains numerically at γ = π/3 and γ = 11π/24,
which also give two applicable domains. From this fact,
we have concluded that γc = π/2, the endpoint of γ. The
reason for the emergence of the new domain at γ = π/2
can be explained as follows: When γ 6= π/2, there is only
one W state in the (u, v)-plane at u = v = π/2. When,
however, γ = π/2, there are two local-unitary equivalent
W states in the (u, v)-plane, one each at (u = v = π/2)
and (u = cos−1

√
2/3, v = tan−1

√
3/2). The latter point

corresponds to the point in the (u, v)-plane where the
three applicable domains meet. Thus, many highly en-
tangled states congregate around the two points (u =
v = π/2) and (u = cos−1

√
2/3, v = tan−1

√
3/2), which

forms a new applicable domain in the right-upper corner
in the (u, v)-plane.

The second issue we would like to discuss is about
the characteristics of the applicable domains. As men-
tioned above, there are two applicable domains when

0 ≤ γ < π/2. It is convenient to name these domains
for further discussion. One of the domains, which we
will call the type-I domain, is located in the left-upper
corner in the (u, v)-plane. For the quantum states that
belong to this domain, Pmax becomes γ independent.
The applicable domains Pmax = µ2

P for the γ = 0 case
and Pmax = ρ2

P for the γ = π/4 case are type-I domain.
The other domain, which we will call a type-II domain,
spreads out widely in the (u, v)-plane, except the left-
upper corner. The domains Pmax = µ2

+ for the γ = 0
case and Pmax = ρ2

4 for the γ = π/4 case are type-II
domain. Numerical calculations show that Pmax for the
quantum states that belong to type-II domains exhibit
a monotonically decreasing behavior with increasing γ.
This fact implies that the phase factor generally increases
the entanglement of the quantum states. Numerical cal-
culations show that the type-I domain expands its range
slightly with increasing γ.

We plot the γ-dependence of Pmax for several values
of (u, v) in Fig. 7. In order to support our numerical
analysis, it is more appealing to choose (u, v) to be near
the boundary of the domains. For this reason, we choose
u = 1.1 and v = 0.606, 0.65, 0.7, 0.75, 0.8, 0.9. When
v = 0.606, Pmax becomes γ-independent. This means
that the quantum states corresponding to (u = 1, 1, v =
0.606) belong to the type-I domain over the full-range of
γ. When v = 0.75, 0.8, and 0.9, Pmax exhibit a mono-
tonically decreasing behavior with increasing γ. This
fact implies that the corresponding quantum states be-
long to a type-II domain over the full-range of γ. When
v = 0.65 and 0.7, Pmax exhibits both a monotonically
decreasing and a γ-independent behavior. This fact in-
dicates that the corresponding quantum states belong to
a type-II domain or a type-I domain, depending on γ.
This occurs due to the expansion of the type-I domain
with increasing γ.

VIII. CONCLUSION

In this paper, we have explored the effect of the phase
factor in the geometric entanglement measure. We have
chosen the most general three-qubit states that have
symmetry under qubit-exchange. Our choice of the
quantum states enables us to derive all eigenvalues and
geometric measures analytically when the phase factor
γ is either 0 or π/2. It turns out that the γ = π/2
case has three applicable domains while the γ = 0 case
has two domains. Most highly entangled states reside
around the boundaries of the domains and near the W
state. Apart from the boundaries more and more, quan-
tum states lose their entanglement and eventually be-
come product states.

Our result naturally gives rise to a question: what
is the critical γ, say γc, that distinguishes the two and
three domains? In order to explore this question, we have
analyzed the γ = π/4 case numerically. Our numerical
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calculation shows that there are six different eigenvalues
for the γ = π/4 case, but only two of them contribute
to the geometric entanglement measure. Thus, there are
two domains for γ = π/4.

In order to determine γc we have examined numerically
the number of applicable domains for various γ, all of
which give two applicable domains. We also checked the
applicable domains for the asymmetric quantum state

t1 = t2 6= t3 (113)

numerically when γ = 0. This case also gives two ap-
plicable domains. Therefore, we conclude γc = π/2, the
endpoint of the phase factor. The reason for the ap-
pearance of a new applicable domain at γ = π/2 can
be explained as follows: Unlike other cases, there are
two local-unitary equivalent W states at γ = π/2 at
(u = v = π/2) and (u = cos−1

√
2/3, v = tan−1

√
3/2).

Therefore, many highly-entangled states congregate be-
tween these two W states. This allows formation of a
new applicable domain between two W-states, which is
Pmax = ν2

2 .
We have also examined the γ-dependence of Pmax

for various quantum states. Our numerical calculation
shows the following: If the quantum state belongs to
a type-I domain, its Pmax is γ independent, If, how-
ever, the quantum state belongs to a type-II domain,
its Pmax exhibits a monotonically decreasing behavior
with increasing γ. This means that for states belonging
to type-II domain, the phase factor generally enhances
their entanglement. The main conclusions can be stated
in a simple form that there are three different types of
pure three-qubit states:

(i) States belonging to the first subspace: Entangle-
ment of these states does not depend on the phase.

(ii) States belonging to the second subspace: Entangle-
ment of these states increases with the phase.

(iii) States belonging to the boundary: These states sep-
arate type-I and type-II domains, and depending on
the phase, split up the parameter space into either
two or three subspaces. All the maximally entan-
gled states [30] and states that allow perfect tele-
portation and superdense coding [22] are subsets
of the shared quantum states. We know precisely
among the shared states which ones can be treated
as maximally entangled. However, we need to clar-
ify among the shared states those specific states
that can be used as a quantum channel for perfect
teleportation and superdense coding.

In the appendix, we have shown that there exist eigen-
values for all γ, whose Lagrangian multiplier constant is
zero. Although we conjecture that this is due to some
symmetry of the quantum state |ψ〉, we do not know
the exact physical reason for the emergence of these so-
lutions. It would be of interest to reveal the physical
meaning of these solutions clearly.
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APPENDIX A

In this appendix, we would like to show the existence
of the eigenvalue µ2

0, which corresponds to λ = 0, at
arbitrary γ. When λ = 0, Eq. (14) reduces to

2ht cos γ(1− cos θ) + 2t(g+ t) sin θ cosϕ = 0, (A1a)

2ht sin γ(1− cos θ)− 2t(g− t) sin θ sinϕ = 0, (A1b)

(g2−t2)(1+cos θ)−h2(1−cos θ)−2ht sin θ cos(ϕ−γ) = 0.
(A1c)

The existence of µ2
0 can be shown as follows: First, we

derive θ and ϕ by making use of Eq. (A1a) and Eq. (A1b).
Then, we show that the solutions θ and φ also solve Eq.
(A1c).

Now, we consider only the sin θ 6= 0 case. Then, from
Eq. (A1a) and Eq. (A1b), it is easy to derive

(g + t) sin γ cosϕ+ (g − t) cos γ sinϕ = 0, (A2)

which gives

tanϕ = −g + t

g − t
tan γ. (A3)

Combining Eq. (A2) and Eq. (A3), one can derive the
solution for ϕ, which is

cosϕ = ± g − t√
(g − t)2 + (g + t)2 tan2 γ

,

sinϕ = ∓ (g + t) tan γ√
(g − t)2 + (g + t)2 tan2 γ

. (A4)

Inserting Eq. (A4) into Eq. (A1b), one can derive sin θ
in the form

sin θ = ∓ 2h(g2 − t2)
√
g2 + t2 − 2gt cos 2γ

h2(g2 + t2 − 2gt cos 2γ) + (g2 − t2)2
. (A5)

Inserting Eq. (A4) and Eq. (A5) into the lhs of Eq. (A1c),
one can show straightforwardly that Eq. (A1c) is solved
already by Eq. (A4) and Eq. (A5). This guarantees the
existence of µ2

0.
In order to derive µ2

0 explicitly, we choose the upper
sign in Eq. (A4) and in Eq. (A5). Then, the components
of the vector s become

sx = sin θ cosϕ =
−2h(g − t)2(g + t) cos γ

h2[(g2 + t2)− 2gt cos 2γ] + (g2 − t2)2
,
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(A6a)

sy = sin θ sinϕ =
2h(g − t)(g + t)2 sin γ

h2[(g2 + t2)− 2gt cos 2γ] + (g2 − t2)2
,

(A6b)

sz = cos θ =
h2[(g2 + t2)− 2gt cos 2γ]− (g2 − t2)2

h2[(g2 + t2)− 2gt cos 2γ] + (g2 − t2)2
.

(A6c)

Inserting Eq. (A6) into Eq. (8) and performing tedious
calculations, one can show that µ2

0, the eigenvalue corre-
sponding to λ = 0, becomes

µ2
0 =

g2h2(g2 + t2 − 2gt cos 2γ) + t2(g2 − t2)2

h2(g2 + t2 − 2gt cos 2γ) + (g2 − t2)2
. (A7)

It is straightforward to show that the choice of the lower
sign in Eq. (A4) and in Eq. (A5) leads us to the same
expression for µ2

0. One can show easily that µ2
0 exactly

coincides with µ2
1 in Eq. (25), ν2

1 in Eq. (43) and ρ2
0 in Eq.

(111) when γ = 0, γ = π/2, and γ = π/4, respectively.
Finally, making use of the explicit expression for µ2

0,
one can derive the nearest product state |q〉|q〉|q′〉 for µ2

0,
i.e.,

AB〈q|〈q|ψ〉 = µ0|q′〉, AC〈q|〈q′|ψ〉 = µ0|q〉,
BC〈q|〈q′|ψ〉 = µ0|q〉, (A8)

where |ψ〉 is given in Eq. (7). Since s is a Bloch vector
of |q〉〈q|, one can show directly that

|q〉 =
1√

h2`2 + (g2 − t2)2
[
h`|0〉 − (g2 − t2)e−iη|1〉

]
,

(A9)

where

`2 ≡ g2 + t2 − 2gt cos 2γ, cos η =
g − t

`
cos γ,

sin η =
g + t

`
sin γ. (A10)

Inserting Eq. (A9) into Eq. (A8), it is straightforward to
show that |q′〉 becomes

|q′〉 =
1
N

[{
gh2`2 + t(g2 − t2)2e2iη

}
|0〉

+eiηh(g2 − t2)
{

(g2 − t2)ei(γ+η) − 2`t
}
|1〉

]
,

(A11)

where N is a normalization constant, which makes |q′〉 a
unit vector.

For the γ = 0 case, the nearest product state becomes

|q〉 =
1√

h2 + (g + t)2
(h|0〉 − (g + t)|1〉) , (A12)

|q′〉 =
1√

{gh2 + t(g + t)2}2 + h2(g2 − t2)2

×
[{
gh2 + t(g + t)2

}
|0〉+ h(g2 − t2)|1〉

]
. (A13)

It is interesting to note that 〈q|q′〉 = 0 when D1 = 0,
where D1 is given in Eq. (63).

For the γ = π/2 case, |q〉 abd |q′〉 becomes

|q〉 =
1√

h2 + (g − t)2
(h|0〉+ i(g − t)|1〉) , (A14)

|q′〉 =
1√

{gh2 − t(g − t)2}2 + h2(g2 − t2)2

×
[{
gh2 − t(g − t)2

}
|0〉 − ih(g2 − t2)|1〉

]
. (A15)

It is interesting to note that 〈q|q′〉 = 0 when C3 = 0,
where C3 is given in Eq. (89).
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